真菌和细菌生物量在土壤团聚体中的分布和耕作响应

罗红燕 已出版文章查询
罗红燕
本平台内已出版文章查询
1 蒋先军 已出版文章查询
蒋先军
本平台内已出版文章查询
1 谢德体 已出版文章查询
谢德体
本平台内已出版文章查询
1 李楠 已出版文章查询
李楠
本平台内已出版文章查询
1 曹良元 已出版文章查询
曹良元
本平台内已出版文章查询
1

+ 作者地址

1西南大学资源环境学院


0
  • 摘要
  • 参考文献
  • 相关文章
  • 统计
首次报道亚热带紫色水稻土中土壤真菌和细菌生物量在不同粒径水稳性团聚体中的分布及耕作的影响。实验样品采自16年的国家紫色土长期定位试验站的垄作免耕(Combining Ridge and No-tillage,NT)、冬水稻田(Flooded Paddy Field,FPF)和常规平作(Conventional Tillage,CT)土壤。表层土样(020cm)通过湿筛法分别得到>4.76 mm、2.04.76 mm、1.02.0 mm、0.251.0 mm、0.0530.25 mm、<0.053mm粒径的土壤团聚体。采用麦角固醇和胞壁酸标记法测定各级团聚体中真菌和细菌的生物量。结果显示在垄作免耕、冬水稻田、常规平作土样中,真菌生物量与细菌生物量在<0.053 mm的粘粒中含量最低;在0.0530.25 mm的土壤微团聚体中最高;在大于0.25 mm的大团聚体中真菌和细菌生物量随粒径的增大而增多,但细菌和真菌生物量在不同耕作方式的土样中的变化模式有一定的差异。3种耕作方式相比较,垄作免耕的土壤真菌和细菌的生物量在3种耕作方式中最高,冬水稻田次之,常规平作最低。真菌生物量与细菌生物量的比率分布模式在不同耕作方式的土样中差异较大,垄作免耕的真菌生物量与细菌生物量的比率在3种耕作方式中最高,冬水稻田次之,常规平作最低,但除了在0.251.0 mm、2.04.76 mm的团聚体之间有明显差异外(P<0.05),其余粒径之间均无明显差异(P>0.05)。这表明土壤真菌生物量和细菌生物量在亚热带紫色水稻土水稳定性团聚体中的分布模式与团聚体的粒径和耕作方式有关,3种耕作方式中垄作免耕对真菌和细菌生物量分布的响应最为明显。

[1]Chenu C,Soulas G.Variability of pesticide mineralization in individual soil aggregates of millimeter size.Developments in Soil Science,2002,28(1):127-136.

[2]Jiang X J,Li H,Xie D T.Fractal theory in the study of soil fertility and prospects.Soil,2007,39(5):677-683.

[3]Wu J S,Lin Q M,Huang Q Y.microbial biomass determination and its application.Beijing:Meteorological Press,2006.35-36.

[4]Insam H,Mitchell C C,Dormaar J F.Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols.Soil Biology and Biochemistry,1991,23(5):459-464.

[5]Adu J K,Lades J M.Utilization of organic materials in soil aggregation by bacteria and fungi.Soil Biology and Biochemistry,1978,10(1):117-122.

[6]Chan K Y,Heenan D P.Microbial-induced soil aggregate stability under different crop rotations.Biology and Fertility of Soils,1999,30(1-2):29-32.

[7]Drazzkiewicz M.Distribution of microorganisms in soil aggregates:effect of aggregate size.Folia Microbiologica,1994,39(4):276-282.

[8]Emerson W W,Foster R C M.Organo-mineral in relation to soil ation and structure.In:Interactions of Soil Mineral with complexes NaturalOrganic and Microbes Soil Science Society of Austria.Spec.Pub1.1986,No.17:521-548.

[9]Guggenberger G,Frey S D,Six J,et al.Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems.Soil Science Societyof America Journa,1999,63:1188-1198.

[10]Chiu C Y,Chen T H,Imberger K,et al.Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils.Geoderma,2006,130(3-4):265-271.

[11]Cao LY,Z L,S J,et al.The utility of ergosterol as fungi biomass of different aggregates in soil.Acta Pedologica Sinica,2008,45(6):41~44.

[12]Imberger K T,Chiu C Y.Topographical and seasonaleffects on soil fungal and bacterial activity in subtropical,perhumid,primary and regeneratedmontane forests.Soil Biol.Biochem,2002,34:711-720.

[13]Liang C,Read H W,Balser T C.Reliability of Muramic Acid as a Bacterial Biomarker is Influenced by Methodological Artifacts fromStreptomycin.Microb Ecol,2008,56:1120-1127.

[14]Balkwill D L,Leach F R,Wilson J T,McNabb J F,et al.Equivalence of microbial biomass measures based on membranelipid and cell-wallcomponents,adenosine-triphosphate,and direct counts in subsurface aquifer sediments.Microbial Ecol,1988,16:73-84.

[15]Fox A.Rosario RMTQuantification of muramic acid,a marker for bacterial peptidoglycan,in dust collected from hospital and home air-conditioningfilters using gas chromatography-mass spectrometry.Indoor Air,1994,4:239-247.

[16]Gilbart J,Fox A,Whiton R S,et al.Rhamnose and muramic acid:chemical markers for bacterial cell walls in mammalian tissues.J MicrobiolMeth,1986,5:271-282.

[17]Kozar MP,Krahmer MT,FoxA,et al.Lunar dust:a negative control for biomarker analyses of extraterrestrial samples.GeochimCosmochimAc,2001,65:3307-3317.

[18]Chen Z,Jiang X J,Luo H Y,et al.Distribution of soil microbial biomass within soil water-stable aggregates and the effects of tillage.ActaEcologica Sinica,2008,28(12):5964-5969.

[19]Elliot E T.Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils.Soils Science Am J,1986,50:627-633.

[20]Montgomery H J,Monreal C M,Young J C,et al.Determinination of soil fungal biomass from soil ergosterol analyses.Soil Biology andBiochemistry,2000,32:1207-1217.

[21]Appuhn R G,Joergensen M,Raubuch E,et al.The automated determination of glucosamine,galactosamine,muramic acid and mannosamine insoil and root hydrolysates by HPLC.Journal of Plant Nutrition and Soil Science,2004,167:17-21.

[22]Guo J X,Zhu TC,Ma W M,et al.The Study on Relationshp between Microorganisms and Ecological Environment inLeymus chinesisGrassland.Acta Agrestia Sinica,1996,4(4):240-245..

[23]Shi Z L,Jiang X J,Zhang W.Influences of combing ridge and no-tillage on pore characteristics of soil aggregates in a rice based cropping system.Southwest China Journal of Agricultural Sciences,2008,21(1):30-34.

[24]Zhu HH,Hung D Y,Liu S L,et al.Effects of ex situ r ice strawincorpora tion on organ icma tter con ten t and main physical properties of hillyred soil.Chinese Journal of Applied Ecology,2007,18(11):2497-2502.

[25]Mertz C,Kleber M,Reinhold J.Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation.OrganicGeochemistry,2005,36:1311-1322.

[26]Chen J S,Chiu C Y.Characterization of soil organic matter in different particle size fractions in humid subalpine soils by CP/MAS 13C NMR.Geoderma,2003,117;129-141.

[27]Emerson W W,Foster R C.Organo-mineral in relation to soil ation and structure.1n:Interactions of Soil Mineral with complexes Natural Organicand Microbes.Soil Science Society of Austria,Spec.publ,1986,17:521-548.

[28]Frey S D,Elliott E T,Paustian K.Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climaticgradients.Soil Biology and Biochemistry,1999,31(4):573-585.

[29]Plassart P,Vinceslas M A,Gangneux C,et al.Molecular and functional responses of soil microbial communities under grassland restorationAgriculture.Ecosystems&Environment,2008,127(3-4):286-293.

[30]Lauber C L,Strickland MS,Bradford MA,et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types.Soil Biology and Biochemistry,2008,40(9):2407-2415.

[31]Campbell C D,Cameron C M,Bastias B A,et al.Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass andresponses to carbon substrates.Soil Biology and Biochemistry,2008,40(9):2246-2252.

[32]Marhan S,Kandeler E,Scheu S.Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricusterrestris L(Oligochaeta,Lumbricidae).Applied Soil Ecology,2007,35(2):412-422.

[33]Imberger K T,Chiu C Y.Spatial change of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid,sub-tropical region.Biol Fertil Soils,2001,33:105-110.

[34]Shao J A,Tang X H,Wei C F.Conservation tillage on the impact of paddy soil organic matter.Acta Ecologica Sinica,2007,21(11):4434-4442.

[35]Gao M,Li Y B,Wei C F,et al.Effects of Long-term No-tillage Ridge Culture on Soil Properties of Paddy Field.Journal of Soil WaterConservation,2005,19(3):29-33.

[36]Beare MH,Hendrix P F,Coleman D C.Water-stable aggregates and organic matter fractions in conventional and no tillage soils.Soil ScienceSociety of America Journal,1994,58:777-786.

[37]Kay B D.Rates of change of soil structure under different cropping systems.Advance in Soil Science,1990,12:1-2.

[2]蒋先军,李航,谢德体,等.分形理论在土壤肥力研究中的应用与前景.土壤,2007,39(5):677~683.

[3]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006:35~36.

[11]曹良元,张磊,石杰,等.通过麦角固醇的含量检测土壤中不同团聚体的真菌生物量.土壤学报,2008,45(6):41~44.

[18]陈智,蒋先军,罗红燕,等.土壤微生物生物量在团聚体中的分布以及耕作的影响.生态学报,2008,28(12):5964~5969.

[22]郭继勋,祝廷成,马文明,等.东北羊草草原土壤微生物与生态环境的关系.草地学报,1996,4(4):240~245.

[23]施占领,蒋先军,张维,等.稻田垄作免耕对土壤的中小团聚体孔隙分布的影响.西南农业学报,2008,21(1):30~34.

[24]朱捍华,黄道友,刘守龙,等.稻草易地还土对丘陵红壤有机质和主要物理性质的影响.应用生态学报,2007,18(11):2497~2502.

[34]邵景安,唐晓红,魏朝富,等.保护性耕作对稻田土壤有机质的影响.生态学报,2007,21(11):4434~4442.

[35]高明,李阳兵,魏朝富,等.稻田长期垄作免耕对土壤肥力性状的影响研究.水土保持学报,2005,19(3):29~33.


语种: 中文   

基金国家自然科学基金资助项目(40501033);国家十一.五科技支撑计划资助项目(2007BAD87B10)

关键词土壤团聚体 真菌生物量 细菌生物量 耕作方式


期刊热词
  • + 更多
  • 字体大小